Introduction to Monte Carlo Statistical Methods

George Casella University of Florida

Exerpts from the book

Monte Carlo Statistical Methods

by

Christian Robert and George Casella Springer-Verlag 1999

Contents

	troduction Statistical Models	5
2.1 2.2 2.2	Basic Methods 1.1 Desiderata and Limitations Transformation Methods Accept-Reject Methods	11 12 12 13 14
	onte Carlo Integration Importance Sampling	21 22
4.1 4.2	arkov Chains Basic notions Ergodicity and convergence Limit theorems	27 27 29 31
	onte Carlo Optimization Introduction	33
rit 6.1	ne Metropolis-Hastings Algo- chm Monte Carlo Methods based on farkov Chains	43

4		CONTENTS	[0.0]
	6.2	The Metropolis–Hastings algorithm	44
7	\mathbf{T}	ne Gibbs Sampler	49
	7.1	General Principles	49
8	\mathbf{D}^{i}	iagnosing Convergence	53
	8.1	Stopping the Chain	53
	8.2	Monitoring Convergence to the	
	S	tationary Distribution	55
	8.3	Monitoring Convergence of Aver-	
	a	ges	58
9	In	nplementation in Missing Data	
	${f M}$	odels	61
	9.1	Introduction	61
	9.2	Finite mixtures of distributions	68

CHAPTER 1

Introduction

- Experimenters choice before fast computers
 - Describe an accurate model which would usually preclude the computation of explicit answers
 - o or choose a standard model which would allow this computation, but may not be a close representation of a realistic model.
- Such problems contributed to the development of simulation-based inference

INTRODUCTION [1.1

1.1 Statistical Models

Example 1.1.1 – Censored data models –

— are missing data models where densities are not sampled directly.

In a typical simple statistical model, we would observe

$$Y_1, \cdots, Y_n \sim f(y|\theta).$$

The distribution of the sample would then be given by the product

$$\prod_{i=1}^n f(y_i|\theta).$$

Inference about θ would then be based on this distribution.

With *censored* random variables the actual observations are

$$Y_i^* = \min\{Y_i, \overline{u}\}$$

where \overline{u} is censoring point.

As a particular example, if

$$X \sim \mathcal{N}(\theta, \sigma^2)$$
 and $Y \sim \mathcal{N}(\mu, \rho^2)$,

the variable

$$Z = X \wedge Y = \min(X, Y)$$

is distributed as

$$\begin{bmatrix} 1 - \Phi\left(\frac{z - \theta}{\sigma}\right) \end{bmatrix} \times \rho^{-1}\varphi\left(\frac{z - \mu}{\rho}\right) \\ + \left[1 - \Phi\left(\frac{z - \mu}{\rho}\right) \right] \sigma^{-1}\varphi\left(\frac{z - \theta}{\sigma}\right)$$

where φ and Φ are the density and cdf of the normal $\mathcal{N}(0,1)$ distribution.

Similarly, if

$$X \sim \text{Weibull}(\alpha, \beta),$$

with density

$$f(x) = \alpha \beta x^{\alpha - 1} \exp(-\beta x^{\alpha})$$

the censored variable

$$Z = X \wedge \omega$$
, ω constant,

has the density

$$f(z) = \alpha \beta z^{\alpha} e^{-\beta z^{\alpha}} \mathbb{I}_{z \leq \omega} + \left(\int_{\omega}^{\infty} \alpha \beta x^{\alpha} e^{-\beta x^{\alpha}} dx \right) \delta_{\omega}(z) ,$$
 where $\delta_{a}(\cdot)$ is the Dirac mass at a .

8 INTRODUCTION [1.1

Example 1.1.2 – Mixture models –

Models of $mixtures\ of\ distributions$ are based on the assumption

$$X \sim f_j$$
 with probability p_j ,
for $j = 1, 2, ..., k$, with overall density
 $X \sim p_1 f_1(x) + \cdots + p_k f_k(x)$.

If we observe a sample of independent random variables (X_1, \dots, X_n) , the sample density is

$$\prod_{i=1}^{n} \{ p_1 f_1(x_i) + \dots + p_k f_k(x_i) \} .$$

Expanding this product shows that it involves k^n elementary terms, which is prohibitive to compute in large samples.

Example 1.1.3 –Student's t distribution–

An reasonable alternative to normal errors is the Student's t distribution, denoted by $\mathcal{T}(p, \theta, \sigma)$, which is often more "robust" against possible modeling errors (and others). The density of $\mathcal{T}(p, \theta, \sigma)$ is proportional to

$$\sigma^{-1} \left(1 + \frac{(x - \theta)^2}{p\sigma^2} \right)^{-(p+1)/2}$$

If p is known and the parameters θ and σ are unknown, the likelihood is

$$\sigma^{n\frac{p+1}{2}} \prod_{i=1}^{n} \left(1 + \frac{(x_i - \theta)^2}{p\sigma^2} \right) .$$

This polynomial of degree 2n may have n local minima, each of which needs to be calculated to determine the global maximum.

10 INTRODUCTION [1.

Illustration of the multiplicity of modes of the likelihood from a Cauchy distribution $C(\theta, 1)$ (p = 1) when n = 3 and $X_1 = 0$, $X_2 = 5$, $X_3 = 9$.

5.5in5.5in/work/short/mcmcv22/figures/bmp/cauchy.bmp

Figure 1.1.1. Likelihood of the sample (0,5,9) from the distribution $C(\theta,1)$.

CHAPTER 2

Random Variable Generation

- We rely on the possibility of producing (with a computer) a supposedly endless flow of random variables (usually iid) for well-known distributions.
- We look at a uniform random number generator and illustrate methods for using these uniform random variables to produce random variables from both standard and non-standard distributions

2.1 Basic Methods

2.1.1 Desiderata and Limitations

"Any one who considers arithmetical methods of reproducing random digits is, of course, in a state of sin. As has been pointed out several times, there is no such thing as a random number—there are only methods of producing random numbers, and a strict arithmetic procedure of course is not such a method." –John Von Neumann (1951)

- The problem is to produce a deterministic sequence of values in [0,1] which imitates a sequence of iid uniform random variables $\mathcal{U}_{[0,1]}$.
- Can't use the physical imitation of a "random draw" (no guarantee of uniformity, no reproducibility)
- random sequence in the following sense: Having generated (X_1, \dots, X_n) , knowledge of X_n [or of (X_1, \dots, X_n)] imparts no discernible knowledge of the value of X_{n+1} .
- Of course, given the initial value X_0 , the sample (X_1, \dots, X_n) is always the same.
- the validity of a random number generator is based on a single sample X_1, \dots, X_n when n tends to $+\infty$ and not on replications (X_{11}, \dots, X_{1n}) , $(X_{21}, \dots, X_{2n}), \dots (X_{k1}, \dots, X_{kn})$ where n is fixed and k tends to infinity.
- In fact, the distribution of these n-tuples depends on the manner in which the initial values X_{r1} $(1 \le r \le k)$ were generated.

0

0

2.2 Transformation Methods

• The case where a distribution f is linked in a relatively simple way to another distribution that is easy to simulate.

Example 2.2.1 –Exponential variables– If $U \sim \mathcal{U}_{[0,1]}$, the random variable

$$X = -\log U/\lambda$$

has distribution

$$P(X \le x) = P(-\log U \le \lambda x)$$

= $P(U \ge e^{-\lambda x})$
= $1 - e^{-\lambda x}$,

the exponential distribution $\mathcal{E}xp(\lambda)$.

• Other random variables that can be generated starting from an exponential include

$$Y = -2 \sum_{j=1}^{\nu} \log(U_j) \sim \chi_{2\nu}^2$$

 $Y = -\beta \sum_{j=1}^{a} \log(U_j) \sim \mathcal{G}a(a, \beta)$

$$Y = \frac{\sum_{j=1}^{a} \log(U_j)}{\sum_{j=1}^{a+b} \log(U_j)} \sim \mathcal{B}e(a, b)$$

2.3 Accept-Reject Methods

- There are many distributions from which it is difficult, or even impossible, to **directly** simulate.
- We now turn to another class of methods that only requires us to know the functional form of the density f of interest up to a multiplicative constant.
- The key to this method is to use a simpler (simulation-wise) density g from which the simulation is actually done.
 - \circ For a given density g
 - the instrumental density
 - \circ there are many densities f
 - —the target densities

which can be simulated this way.

- We first look at the Accept-Reject method.
 - \circ Given a density of interest f,
 - \circ find a density g and a constant M such that

$$f(x) \le Mg(x)$$

on the support of f.

- Algorithm A.1 Accept-Reject Method-
- 1. Generate $X \sim g$, $U \sim \mathcal{U}_{[0,1]}$;
- 2. Accept Y=X if $U \leq f(X)/Mg(X)$;
- 3. Return to 1. otherwise.

This produces a variable Y distributed according to f.

- This Algorithm has two interesting properties.
 - \circ First, it provides a generic method to simulate from any density f that is known up to a multiplicative factor.
 - ♦ This property is particularly important in Bayesian calculations. There the posterior distribution is

$$\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$$
.

which is easily specified up to a normalizing constant

- \circ A second property of the lemma is that the probability of acceptance in the algorithm is exactly 1/M.
 - \diamond The expected number of trials until a variable is accepted is M

Example 2.3.1 –Normal from a Cauchy–

 $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$

and

$$g(x) = \frac{1}{\pi} \frac{1}{1 + x^2},$$

densities of the normal and Cauchy distributions.

- $\frac{f(x)}{g(x)} = \sqrt{\frac{\pi}{2}}(1+x^2) \ e^{-x^2/2} \le \sqrt{\frac{2\pi}{e}} = 1.52$ attained at $x = \pm 1$.
- So the probability of acceptance 1/1.52 = 0.66, and, on the average, one out of every three simulated Cauchy variables is rejected.
- The mean number of trials to success is 1.52.

Example 2.3.2 Gamma with non-integer shape parameter

- This illustrates a real advantage of the Accept-Reject algorithm.
- the gamma distribution $\mathcal{G}a(\alpha,\beta)$ can be represented as the sum of α exponential random variables.
- This is impossible if α is not an integer
- Can use the Accept-Reject algorithm with instrumental distribution

$$\mathcal{G}a(a,b)$$
, with $a = [\alpha]$, $\alpha \ge 0$.
(Without loss of generality, $\beta = 1$.)

• Up to a normalizing constant,

$$f/g_b = b^{-a}x^{\alpha-a} \exp\{-(1-b)x\} \le b^{-a} \left(\frac{\alpha-a}{(1-b)e}\right)^{\alpha-a}$$
 for $b \le 1$.

The maximum is attained at $b = a/\alpha$.

Example 2.3.3 Truncated Normal distributions.

- Truncated Normals appear in many contexts
- When constraints $x \geq \underline{\mu}$ produce densities proportional to

$$e^{-(x-\mu)^2/2\sigma^2} \, \mathbb{I}_{x \ge \mu}$$

for a bound μ large compared with μ ,

- there are alternatives which are far superior to the naïve method of generating a $\mathcal{N}(\mu, \sigma^2)$ until exceeding $\underline{\mu}$.
- This approach requires an average number of $1/\Phi((\mu-\underline{\mu})/\sigma)$ simulations from $\mathcal{N}(\mu, \sigma^2)$ for one acceptance.
- An instrumental distribution is the translated exponential distribution, $\mathcal{E}xp(\alpha,\underline{\mu})$, with density

$$g_{\alpha}(z) = \alpha e^{-\alpha(z-\underline{\mu})} \mathbb{I}_{z \ge \mu}$$
.

• The ratio f/g_{α} is then bounded by

$$f/g_{\alpha} \le \begin{cases} 1/\alpha & \exp(\alpha^2/2 - \alpha\underline{\mu}) & \text{if } \alpha > \underline{\mu}, \\ 1/\alpha & \exp(-\underline{\mu}^2/2) & \text{otherwise.} \end{cases}$$

CHAPTER 3

Monte Carlo Integration

- Two major classes of numerical problems that arise in statistical inference
 - optimization generally associated with the likelihood approach
 - integration- generally associated with the Bayesian approach

3.1 Importance Sampling

- ullet Simulation from f (the true density) is not necessarily optimal, in fact, it is usually suboptimal.
- The alternative to direct sampling from f is $importance\ sampling$.

Definition 3.1.1 The method of *importance* sampling is an evaluation of

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) f(x) dx.$$

based on generating a sample X_1, \ldots, X_n from a given distribution g, and approximating

$$\mathbb{E}_f[h(X)] \approx \frac{1}{m} \sum_{j=1}^m \frac{f(X_j)}{g(X_j)} h(X_j) .$$

This method is based on the alternative representation

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} \left[h(x) \frac{f(x)}{g(x)} \right] g(x) dx.$$

• The estimator

$$\mathbb{E}_f[h(X)] \approx \frac{1}{m} \sum_{j=1}^m \frac{f(X_j)}{g(X_j)} h(X_j)$$

$$\to \int_{\mathcal{X}} h(x) f(x) dx$$

- \circ converges for same reason the regular Monte Carlo estimator \overline{h}_m converges;
- \circ converges for any choice of the distribution g [as long as $\operatorname{supp}(g) \supset \operatorname{supp}(f)$].
- \circ The instrumental distribution g can be chosen from distributions that are easy to simulate.
- \circ The same sample (generated from g) can be used repeatedly, not only for different functions h but also for different densities f.

Example 3.1.2 –Student's t distribution – Consider $X \sim \mathcal{T}(\nu, \theta, \sigma^2)$, with density

$$f(x) = \frac{\Gamma((\nu+1)/2)}{\sigma\sqrt{\nu\pi} \,\Gamma(\nu/2)} \left(1 + \frac{(x-\theta)^2}{\nu\sigma^2}\right)^{-(\nu+1)/2} .$$

Without loss of generality, take $\theta = 0$, $\sigma = 1$.

• Calculate the integral $\int_{2.1}^{\infty} x^5 f(x) dx.$

- Simulation possibilities
 - \circ Directly from f, since $f = \frac{\mathcal{N}(0,1)}{\sqrt{\chi_{\nu}^2}}$
 - \circ Importance sampling using Cauchy $\mathcal{C}(0,1)$
 - Importance sampling using a normal (expected to be nonoptimal).
 - \circ Importance sampling using a $\mathcal{U}([0, 1/2.1])$

- The figure shows
 - o Uniform is best
 - o Cauchy is OK
 - \circ f and Normal are rotten

CHAPTER 4

Markov Chains

- Use of Markov chains
 - Many algorithms can be described as Markov chains
- Needed properties
 - The quantity of interest is what the chain converges to
- We need to know
 - When will chains converge
 - What do they converge to

4.1 Basic notions

- A *Markov chain* is a sequence of random variables that can be thought of as evolving over time.
- The probability of a transition depending on the particular set that the chain is in
- We define the chain in terms of its *transition* kernel, the function that determines these transitions.

[4.1

Definition 4.1.1 A transition kernel is a function K defined on $\mathcal{X} \times \mathcal{B}(\mathcal{X})$ such that

- (i) $\forall x \in \mathcal{X}, K(x, \cdot)$ is a probability measure;
- (ii) $\forall A \in \mathcal{B}(\mathcal{X}), K(\cdot, A)$ is measurable.
 - When \mathcal{X} is *discrete*, the transition kernel simply is a (transition) matrix K with elements

$$P_{xy} = P(X_n = y | X_{n-1} = x) , \qquad x, y \in \mathcal{X}.$$

• In the continuous case, the *kernel* also denotes the conditional density K(x, x') of the transition $K(x, \cdot)$. That is,

$$P(X \in A|x) = \int_A K(x, x')dx'.$$

Definition 4.1.2 Given a transition kernel K, a sequence $X_0, X_1, \ldots, X_n, \ldots$ of random variables is a *Markov chain*, denoted by (X_n) , if, for any t, the conditional distribution of X_t given $x_{t-1}, x_{t-2}, \ldots, x_0$ is the same as the distribution of X_t given X_t . That is,

$$P(X_{k+1} \in A | x_0, x_1, x_2, \dots, x_k) = P(X_{k+1} \in A | x_k)$$

= $\int_A K(x_k, dx)$

4.2 Ergodicity and convergence

- We consider: to what is the chain converging?
- The invariant distribution π is the natural candidate for the *limiting distribution*
- A fundamental property is *ergodicity*, or independence of initial conditions.
 - \circ In the discrete case with a state ω is ergodic if

$$\lim_{n\to\infty} |K^n(\omega,\omega) - \pi(\omega)| = 0.$$

ullet In general , we establish convergence using the $total\ variation\ norm,$

$$\|\mu_1 - \mu_2\|_{TV} = \sup_A |\mu_1(A) - \mu_2(A)|.$$

• and we want

$$\|\int K^n(x,\cdot)\mu(dx) - \pi\|_{TV}$$

$$= \sup_{A} \left| \int K^{n}(x,A)\mu(dx) - \pi(A) \right|$$

to be small.

30

MARKOV CHAINS

[4.2]

Theorem 4.2.1 If (X_n) is Harris positive recurrent and aperiodic, then

$$\lim_{n \to \infty} \| \int K^n(x, \cdot) \mu(dx) - \pi \|_{TV} = 0$$

for every initial distribution μ .

- We thus take "Harris positive recurrent and aperiodic" as equivalent to "ergodic"
- Convergence in total variation implies $\lim_{n\to\infty} |\mathbb{E}_{\mu}[h(X_n)] \mathbb{E}^{\pi}[h(X)]| = 0$ for every bounded function h.
- There are difference speeds of convergence
 - ergodic (fast)
 - geometrically ergodic (faster)
 - uniformly ergodic (fastest)

4.3 Limit theorems

- Ergodicity determines the probabilistic properties of *average* behavior of the chain.
- But we also want to do *statistical inference*, which must reason by induction from the observed sample.
- The fact that $||P_x^n \pi||$ is close to 0 does not bring direct information about

$$X_n \sim P_x^n$$

.

- We need LLNs and CLTs
- The classical LLNs and CLTs are not directly applicable due to:
 - \circ The Markovian dependence structure between the observations X_i
 - The non-stationarity of the sequence.

Theorem 4.3.1 Ergodic Theorem –LLN

If the Markov chain (X_n) is Harris recurrent, then for any function h with $E|h| < \infty$,

$$\lim_{n \to \infty} \frac{1}{n} h(X_i) = \int h(x) d\pi(x),$$

- To get a CLT, we need more assumptions.
- For MCMC, the easiest is reversibility

Definition 4.3.2 A Markov chain (X_n) is reversible if for all n

$$X_{n+1}|X_{n+2} \sim X_{n+1}|X_n.$$

• So the direction of time does not matter.

Theorem 4.3.3 If the Markov chain (X_n) is Harris recurrent and reversible,

$$\frac{1}{\sqrt{N}} \left(\sum_{n=1}^{N} \left(h(X_n) - \mathbb{E}^{\pi}[h] \right) \right) \stackrel{\mathcal{L}}{\leadsto} \mathcal{N}(0, \gamma_h^2) .$$
where

$$0 < \gamma_h^2 = \mathbb{E}_{\pi}[\overline{h}^2(X_0)] + 2 \sum_{k=1}^{\infty} \mathbb{E}_{\pi}[\overline{h}(X_0)\overline{h}(X_k)] < +\infty.$$

CHAPTER 5

Monte Carlo Optimization

5.1 Introduction

• Differences between the numerical approach and the simulation approach to the problem

$$\max_{\theta \in \Theta} \ h(\theta)$$

lie in the treatment of the function h.

- Using deterministic numerical methods, the analytical properties of the target function (convexity, boundedness, smoothness) are often paramount.
- For the simulation approach, we are more concerned with h from a probabilistic (rather than analytical) point of view.

Example 5.1.1 Minimization.

Consider minimizing

$$h(x,y) = (x \sin(20y) + y \sin(20x))^2 \cosh(\sin(10x)x) + (x \cos(10y) - y \sin(10x))^2 \cosh(\cos(20y)y),$$
 with global minimum 0 at $(x,y) = (0,0)$.

- Many local minima.
- Standard methods may not find the global minimum
- We can simulate from $\exp(-h(x,y))$.
- Get the minimum from the resulting $h(x_i, y_i)$'s.
- Use the stochastic gradient method with our test function
- Results of three stochastic gradient runs for the minimization of the function h in Example 5.1.1 with different values of (α_j, β_j) and starting point (0.65, 0.8). The iteration T is obtained by the stopping rule $||\theta_T \theta_{T-1}|| < 10^{-5}$.

5.1] INTRODUCTION 35

$5in4in/work/short/mcmcv22/figures/bmp/grid_max.bmp$

Figure 5.1.1. Grid representation of the function h(x,y) of Example 5.1.1 on $[-1,1]^2$.

$lpha_j$	1/10j	1/100j	$1/10\log(1+j)$
eta_j	1/10j	1/100j	1/j
$ heta_T$	(-0.166, 1.02)	(0.629, 0.786)	(0.0004, 0.245)
$h(heta_T)$	1.287	0.00013	4.24×10^{-6}
$\min_t h(\theta_t)$	0.115	0.00013	2.163×10^{-7}
Iteration	50	93	58

• Simulated Annealing

- This name is borrowed from Metallurgy: A metal manufactured by a slow decrease of temperature (annealing) is stronger than a metal manufactured by a fast decrease of temperature.
- Fundamental idea: A change of scale, called temperature, allows greater exploration h
- Rescaling partially avoids trapping in local maxima.
- Given a temperature T > 0, generate

$$\theta_1^T, \theta_2^T \sim \pi(\theta) \propto \exp(h(\theta)/T)$$

and approximate the maximum of h.

 \circ As $T \downarrow 0$, the values simulated concentrate in a narrower and narrower neighborhood of the local maxima of h

- The **Algorithm** proposed by Metropolis *et al.* (1953).
- Starting from θ_0 ,
 - $\circ \zeta \sim \text{uniform in a neighborhood of } \theta_0$
 - \circ the new value of θ is generated by:

$$\theta_1 = \begin{cases} \zeta & \text{with probability } \rho = \exp(\Delta h/T) \wedge 1 \\ \theta_0 & \text{with probability } 1 - \rho, \end{cases}$$
where $\Delta h = h(\zeta) - h(\theta_0)$.

- Therefore,
 - \circ if $h(\zeta) \geq h(\theta_0)$, ζ is accepted with probability 1
 - \circ if $h(\zeta) < h(\theta_0)$, ζ may still be accepted with probability $\rho \neq 0$
- ullet So if θ_0 is a local maximum of h, the algorithm escapes with a probability that depends on T
- \bullet Usually, the simulated annealing algorithm modifies the temperature T at each iteration.

• The EM Algorithm

- introduced by Dempster *et al.* (1977) to overcome the difficulties in maximizing likelihoods
- taking advantage of the representation

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$$

and solving a sequence of easier maximization problems whose limit is the answer to the original problem.

- EM algorithm relates to MCMC algorithms in the sense that it can be seen as a forerunner of the Gibbs sampler in its Data Augmentation version, replacing simulation by maximization.
- Suppose that we observe X_1, \ldots, X_n , iid from $g(x|\theta)$ and want to compute

$$\hat{\theta} = \arg \max L(\theta|\mathbf{x}) = \prod_{i=1}^{n} g(x_i|\theta).$$

• We augment the data with \mathbf{z} , where $\mathbf{X}, \mathbf{Z} \sim f(\mathbf{x}, \mathbf{z} | \theta)$ and note the identity

$$k(\mathbf{z}|\theta, \mathbf{x}) = \frac{f(\mathbf{x}, \mathbf{z}|\theta)}{g(\mathbf{x}|\theta)},$$

where $k(\mathbf{z}|\theta, \mathbf{x})$ is the conditional distribution of the missing data \mathbf{Z} given the observed data \mathbf{x} .

• This identity leads to the following relationship between the complete-data likelihood

$$L^{c}(\theta|\mathbf{x}\mathbf{z}) = f(\mathbf{x}, \mathbf{z}|\theta)$$

and the observed data likelihood

$$L(\theta|\mathbf{x}).$$

For any value θ_0 ,

$$\log L(\theta|\mathbf{x}) = \mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x},\mathbf{z})|\theta_0,\mathbf{x}]$$

$$-\mathbb{E}_{\theta_0}[\log k(\mathbf{z}|\theta, \mathbf{x})|\theta_0, \mathbf{x}],$$

where the expectation is with respect to $k(\mathbf{z}|\theta_0,\mathbf{x})$.

- the strength of the EM algorithm is that we only have to deal with the first term on the right side above, as the other term can be ignored.
- The likelihood is increased at every iteration
 - there are convergence guarantees

• Denote the expected log-likelihood by $Q(\theta|\theta_0, \mathbf{x}) = \mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x}, \mathbf{z})|\theta_0, \mathbf{x}].$

• a sequence of estimators $\hat{\theta}_{(j)}$, j = 1, 2, ..., is obtained iteratively by

$$Q(\hat{\theta}_{(j)}|\hat{\theta}_{(j-1)}, \mathbf{x}) = \max_{\theta} Q(\theta|\hat{\theta}_{(j-1)}, \mathbf{x}).$$

Algorithm A.2 – The EM Algorithm –

1. (the E-step) Compute

$$Q(\theta|\hat{\theta}_{(m)}, \mathbf{x}) = \mathbb{E}_{\hat{\theta}_{(m)}}[\log L^{c}(\theta|\mathbf{x}, \mathbf{z})],$$

where the expectation is with respect to $k(\mathbf{z}|\hat{\theta}_m,\mathbf{x})$.

2. ($the \ M\text{-}step$) Maximize $Q(\theta|\hat{\theta}_{(m)},\mathbf{x})$ in θ and take

$$\theta_{(m+1)} = \arg\max_{\theta} Q(\theta|\hat{\theta}_{(m)}, \mathbf{x}).$$

The iterations are conducted until a fixed point of Q is obtained.

Example 5.1.2 Censored data

If $f(x-\theta)$ is the $\mathcal{N}(\theta,1)$ density, the censored data likelihood is

$$L(\theta|\mathbf{x}) = \frac{1}{(2\pi)^{m/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{m} (x_i - \theta)^2\right\} \left[1 - \Phi(a - \theta)\right]^{n-m}$$

and the complete-data log-likelihood is

$$\log L^{c}(\theta|\mathbf{x},\mathbf{z}) \propto -\frac{1}{2} \sum_{i=1}^{m} (x_{i}-\theta)^{2} - \frac{1}{2} \sum_{i=m+1}^{n} (z_{i}-\theta)^{2}$$

where the z_i 's are observations from the truncated Normal distribution

$$k(z|\theta, \mathbf{x}) = \frac{\exp\{-\frac{1}{2}(z-\theta)^2\}}{\sqrt{2\pi}[1-\Phi(a-\theta)]} = \frac{\varphi(z-\theta)}{1-\Phi(a-\theta)}, \qquad a < z.$$

At the jth step in the EM sequence, we have

$$Q(\theta|\hat{\theta}_{(j)}, \mathbf{x}) \propto -\frac{1}{2} \sum_{i=1}^{m} (x_i - \theta)^2$$
$$-\frac{1}{2} \sum_{i=m+1}^{n} \int_a^{\infty} (z_i - \theta)^2 k(z|\hat{\theta}_{(j)}, \mathbf{x}) dz_i,$$

Differentiating with respect to θ yields

$$\hat{\theta}_{(j+1)} = \frac{m\bar{x} + (n-m)\mathbb{E}[Z|\hat{\theta}_{(j)}]}{n} ,$$

where

$$\mathbb{E}[Z|\hat{\theta}_{(j)}] = \int_a^\infty z k(z|\hat{\theta}_{(j)}, \mathbf{x}) \, dz = \hat{\theta}_{(j)} + \frac{\varphi(a - \theta_{(j)})}{1 - \Phi(a - \hat{\theta}_{(j)})}.$$

Thus, the EM sequence is defined by

$$\hat{\theta}_{(j+1)} = \frac{m}{n} \bar{x} + \frac{n-m}{n} \left[\hat{\theta}_{(j)} + \frac{\varphi(a-\hat{\theta}_{(j)})}{1-\Phi(a-\hat{\theta}_{(j)})} \right],$$

which converges to the MLE $\hat{\theta}$.

- A (sometime) difficulty with the EM algorithm is the computation of $Q(\theta|\theta_0, \mathbf{x})$.
- To overcome this difficulty, use

$$\hat{Q}(\theta|\theta_0, \mathbf{x}) = \frac{1}{m} \sum_{i=1}^m \log L^c(\theta|\mathbf{x}, \mathbf{z}) ,$$
where $Z_1, \dots, Z_m \sim k(\mathbf{z}|\mathbf{x}, \theta)$.

• When $m \to \infty$, this quantity converges to $Q(\theta|\theta_0, \mathbf{x})$.

CHAPTER 6

The Metropolis-Hastings Algorithm

6.1 Monte Carlo Methods based on Markov Chains

ullet We know it is not necessary to use a sample from the distribution f to approximate the integral

$$\int h(x)f(x)dx$$
,

- Now we obtain $X_1, \ldots, X_n \sim f$ (approx) without directly simulating from f.
 - \circ We use an $ergodic\ Markov\ chain$ with stationary distribution f
- For an arbitrary starting value $x^{(0)}$, an ergodic chain $(X^{(t)})$ is generated using a transition kernel with stationary distribution f
- This insures the convergence in distribution of $(X^{(t)})$ to a random variable from f.
- For a "large enough" T_0 , $X^{(T_0)}$ can be considered as distributed from f
- We thus produce a dependent sample $X^{(T_0)}, X^{(T_0+1)}, \ldots$, which is generated from f.

6.2 The Metropolis–Hastings algorithm

- ullet The algorithm starts with the objective (target) density f
- A conditional density q(y|x), called the *in-strumental* (or *proposal*) distribution, is then chosen.
- Algorithm A.3 Metropolis Hastings –

Given $x^{(t)}$,

- 1. Generate $Y_t \sim q(y|x^{(t)})$.
- 2. Take

$$X^{(t+1)} = \begin{cases} Y_t & \text{with prob.} & \rho(x^{(t)}, Y_t) \text{,} \\ x^{(t)} & \text{with prob.} & 1 - \rho(x^{(t)}, Y_t) \text{,} \end{cases}$$

$$\rho(x,y) = \min \left\{ \frac{f(y)}{f(x)} \, \frac{q(x|y)}{q(y|x)} \,, 1 \right\} \,.$$

Example 6.2.1 –Saddlepoint tail area approximation–

- Saddlepoint approximation are useful for noncentral chi squared tail areas.
- An alternative is to sample Z_1, \ldots, Z_m , from the saddlepoint distribution, and use

$$P(\bar{X} > a)$$

$$= \int_{\hat{\tau}(a)}^{\infty} \left(\frac{n}{2\pi}\right)^{1/2} \left[K_X''(t)\right]^{1/2} \exp\left\{n\left[K_X(t) - tK_X'(t)\right]\right\} dt$$

$$\approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}[Z_i > \hat{\tau}(a)],$$

- \circ where $K_X(\tau)$ is the cumulant generating function of X
- $\circ \hat{\tau}(x)$ is the solution of $K'(\hat{\tau}(x)) = x$.
- We can derive an instrumental density to use in a Metropolis-Hastings algorithm. Using a Taylor series approximation,

$$\exp \{n [K_X(t) - tK_X'(t)]\} \approx \exp \{-nK_X''(0)\frac{t^2}{2}\}$$

 \circ a first choice for an instrumental density is the $\mathcal{N}(0, 1/nK_X''(0))$

- Use M-H with normal candidate density and $K_X''(t) = 2[p(1-2t) + 4\lambda]/(1-2t)^3$.
 - The same set of simulated random variables are used for all calculations.
 - We avoid calculating the saddlepoint normalizing constant
- Monte Carlo saddlepoint approximation of a noncentral chi squared integral for p = 6 and $\lambda = 9$, based on 10,000 simulated random variables.

interval	renormalized	exact	Monte Carlo
	saddlepoint		
$(36.225, \infty)$.0996	.1	.0992
$(40.542,\infty)$.0497	.05	.0497
$(49.333, \infty)$.0099	.01	.0098

• There are many other algorithms

- \circ Adaptive Rejection Metropolis Sampling
- \circ Reversible Jumps
- $\circ \ Langevin \ algorithms$
- o to name a few...

CHAPTER 7

The Gibbs Sampler

7.1 General Principles

- A very specific simulation algorithm based on the target f.
- Uses the conditional densities f_1, \ldots, f_p from f
- Start with the random variable $\mathbf{X} = (X_1, \dots, X_p)$
- Simulate from the conditional densities,

$$X_i | x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_p$$

 $\sim f_i(x_i | x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_p)$
for $i = 1, 2, \dots, p$.

• Algorithm A.4 – The Gibbs sampler –

Given
$$\mathbf{x}^{(t)} = (x_1^{(t)}, \dots, x_p^{(t)})$$
, generate

1.
$$X_1^{(t+1)} \sim f_1(x_1|x_2^{(t)}, \dots, x_p^{(t)});$$

2.
$$X_2^{(t+1)} \sim f_2(x_2|x_1^{(t+1)}, x_3^{(t)}, \dots, x_p^{(t)}),$$

p.
$$X_p^{(t+1)} \sim f_p(x_p|x_1^{(t+1)}, \dots, x_{p-1}^{(t+1)}),$$
then $\mathbf{X}^{(t+1)} \to \mathbf{X} \sim f.$

- \circ The densities f_1, \ldots, f_p are called the *full* conditionals
- these are the only densities used for simulation
- Thus, even in a high dimensional problem, all of the simulations may be univariate

Example 7.1.1 – Cauchy-normal –

Consider the density

$$f(\theta|\theta_0) \propto \frac{e^{-\theta^2/2}}{[1 + (\theta - \theta_0)^2]^{\nu}}.$$

This is the posterior distribution resulting from the model

$$X|\theta \sim \mathcal{N}(\theta, 1)$$
 and $\theta \sim \mathcal{C}(\theta_0, 1)$.

The density $f(\theta|\theta_0)$ can be written as the marginal density

$$f(\theta|\theta_0) \propto \int_0^\infty e^{-\theta^2/2} e^{-[1+(\theta-\theta_0)^2]\eta/2} \eta^{\nu-1} d\eta$$
, and can therefore be completed as

$$g(\theta, \eta) \propto e^{-\theta^2/2} e^{-[1+(\theta-\theta_0)^2] \eta/2} \eta^{\nu-1}$$
, which leads to the conditional densities

$$g_1(\eta|\theta) = \mathcal{G}a\left(\nu, \frac{1 + (\theta - \theta_0)^2}{2}\right),$$

$$g_2(\theta|\eta) = \mathcal{N}\left(\frac{\theta_0\eta}{1 + \eta}, \frac{1}{1 + \eta}\right).$$

Note that the parameter η is completely meaningless for the problem at hand but serves to facilitate computations.)

- The Gibbs sampler is particularly well suited to hierarchical models.
- Such models naturally appear in Bayesian analysis

Example 7.1.2 –Hierarchical models in animal epidemiology–

- Schukken *et al.* (1991) obtained counts of the number of cases of clinical mastitis in 127 dairy cattle herds over a one year period.
 - $\circ X_i$, $i = 1, \dots, m$, denote the number of cases in herd i
 - $\circ X_i \sim \mathcal{P}(\lambda_i)$, where λ_i is the underlying rate of infection in herd i
 - Lack of independence here (mastitis is infectious) might manifest itself as overdispersion.
 - To account for this, they used the model

$$X_i \sim \mathcal{P}(\lambda_i)$$

 $\lambda_i \sim \mathcal{G}a(\alpha, \beta_i)$
 $\beta_i \sim \mathcal{I}\mathcal{G}(a, b),$

• The Gibbs sampler

$$\lambda_i \sim \pi(\lambda_i | \mathbf{x}, \alpha, \beta_i) = \mathcal{G}a(x_i + \alpha, [1 + 1/\beta_i]^{-1})$$

 $\beta_i \sim \pi(\beta_i | \mathbf{x}, \alpha, a, b, \lambda_i) = \mathcal{I}\mathcal{G}(\alpha + a, [\lambda_i + 1/b]^{-1})$
gives the posterior density of λ_i , $\pi(\lambda_i | \mathbf{x}, \alpha)$

CHAPTER 8

Diagnosing Convergence

8.1 Stopping the Chain

- Convergence results do not tell us when to stop the MCMC algorithm and produce our estimates.
- We now look at methods of controlling the chain in the sense of a *stopping rule* to guarantee that the number of iterations is sufficient.
- From a general point of view, there are three (increasingly stringent) types of convergence for which assessment is necessary.

- Convergence to the Stationary Distribution
 - \diamond a minimal requirement for an algorithm that approximates simulation from f
- Convergence of Averages Here we are concerned with convergence of the empirical average

$$\frac{1}{T} \sum_{t=1}^{T} h(\theta^{(t)}) \to \mathbb{E}_f[h(\theta)].$$

- ♦ This type of convergence is most relevant in the implementation of MCMC algorithms.
- o Convergence to iid Sampling
 - \diamond This measures how close a sample $(\theta_1^{(t)}, \dots, \theta_n^{(t)})$ is to being iid.
 - \diamond the goal is to produce variables θ_i which are (quasi-)independent.

8.2 Monitoring Convergence to the Stationary Distribution

• Graphical Methods

- A natural empirical approach to convergence control is to draw pictures of the output of simulated chains
- This may detect deviant or nonstationary behaviors
- A first idea is to draw the sequence of the $\theta^{(t)}$'s against t
- However, this plot is only useful for strong nonstationarities of the chain.

Example 8.2.1 –Witch's hat distribution–

Consider

$$\pi(\theta|y) \propto \left\{ (1-\delta) \ \sigma^{-d} e^{-\|y-\theta\|^2/(2\sigma^2)} + \delta \right\} \mathbb{I}_C(\theta), \quad y \in \mathbb{R}^d$$

when θ is in to the unit cube $C = [0,1]^d$.

ullet This density has a mode which is very concentrated around y for small δ and σ

- The strong attraction of the mode gives the impression of stationarity for the chain
- The chain with initial value 0.9098, which achieves a momentary escape from the mode, is actually atypical.
- This example has become a *benchmark* to evaluate the performances of different methods of convergence. control.

8.3 Monitoring Convergence of Averages

• Multiple Estimates

Example 8.3.1 – Cauchy posterior – For the posterior distribution

$$\pi(\theta|x_1, x_2, x_3) \propto e^{-\theta^2/2\sigma^2} \prod_{i=1}^{3} \frac{1}{1 + (\theta - x_i)^2}.$$

a completion Gibbs sampling algorithm can be derived by introducing three artificial variables, η_1, η_2, η_3 , such that

$$\pi(\theta, \eta_1, \eta_2, \eta_3 | x_1, x_2, x_3) \propto e^{-\theta^2/2\sigma^2} \prod_{i=1}^3 e^{-(1+(\theta-x_i)^2)\eta_i/2},$$

resulting in the Gibbs sampler (i = 1, 2, 3)

$$\eta_i | \theta, x_i \sim \mathcal{E}xp\left(\frac{1 + (\theta - x_i)^2}{2}\right),$$

$$\theta | x_1, x_2, x_3, \eta_1, \eta_2, \eta_3 \sim \mathcal{N}\left(\frac{\Sigma_i \eta_i x_i}{\Sigma_i \eta_i + \sigma^{-2}}, \frac{1}{\Sigma_i \eta_i + \sigma^{-2}}\right).$$

- The figure illustrates the efficiency of this algorithm by exhibiting the agreement between the histogram of the simulated $\theta^{(t)}$'s and the true posterior distribution
- If the function of interest is $h(\theta) = \exp(-\theta/\sigma)$, the different approximations of $\mathbb{E}_{\pi}[h(\theta)]$ can be monitored.

- ullet The figure graphs the convergence of four estimators versus T (plus one more).
- The strong agreement of S_T , S_T^C indicates convergence
- The bad behavior the importance sampler is most likely associated with an infinite variance.

CHAPTER 9

Implementation in Missing Data Models

9.1 Introduction

- Missing data models are a natural application for simulation
- Simulation replaces the missing data part so that one can proceed with a "classical" inference on the complete model.
- The EM algorithm that Dempster *et al.* (1977) first described a rigorous and general formulation of statistical inference though completion of missing data.
- Now we illustrate the potential of Markov Chain Monte Carlo algorithms in the analysis of missing data models

Example 9.1.1 – Probit Regression –

- Another situation where grouped data appears in a natural fashion is that of *qualitative models*.
- We look at the probit model, often considered as a threshold model.
- We observe $Y_i \sim \text{Bernoulli}\{0,1\}$ and link them to a vector of covariates x_i by the equation

$$p_i = \Phi(x_i^t \beta) , \qquad \beta \in \mathbb{R}^p.$$

where Φ is the standard normal cdf.

- The Y_i 's can be thought of as delimiting a threshold.
 - \circ Assume there are latent (unobservable) continuous random variables Y_i^* where

$$Y_i = \begin{cases} 1 & \text{if } Y_i^* > 0, \\ 0 & \text{otherwise.} \end{cases}$$

o Thus, $p_i = P(Y_i = 1) = P(Y_i^* > 0)$, and we have an automatic way to complete the model →

9.1] INTRODUCTION

- Given
 - \circ prior distribution $\mathcal{N}_p(\beta_0, \Sigma)$ on β
 - \circ the posterior distribution $\pi(\beta|y_1,\ldots,y_n,x_1,\ldots,x_n)$ is computed by

Algorithm A.5 – Probit posterior distribution –

1. Simulate

$$y_i^* \sim \begin{cases} \mathcal{N}_+(x_i^t \beta, 1, 0) & \text{if } y_i = 1, \\ \mathcal{N}_-(x_i^t \beta, 1, 0) & \text{if } y_i = 0, \end{cases}$$
 $(i = 1, \dots, n)$

2. Simulate

$$\beta \sim \mathcal{N}_p \left((\Sigma^{-1} + XX^t)^{-1} (\Sigma^{-1}\beta_0 + \sum_i y_i^* x_i), (\Sigma^{-1} + XX^t)^{-1} \right)$$

- $\circ \mathcal{N}_{+}(\mu, \sigma^{2}, \underline{u})$ and $\mathcal{N}_{-}(\mu, \sigma^{2}, \overline{u})$ denote the normal distribution truncated on the left in \underline{u} , and the normal distribution truncated on the right in \overline{u} , respectively
- $\circ X$ is the matrix whose columns are the x_i 's.

- Incomplete observations arise in numerous settings.
 - A survey with multiple questions may include nonresponses to some personal questions;
 - A calibration experiment may lack observations for some values of the calibration parameters;
 - A pharmaceutical experiment on the aftereffects of a toxic product may skip some doses for a given patient.
- The analysis of such structures is complicated by the fact that the failure to observe is not always explained.
- If these missing observations are entirely due to chance, it follows that the incompletely observed data only play a role through their marginal distribution.
- However, these distributions are not always explicit and a natural approach leading to a Gibbs sampler algorithm is to replace the missing data by simulation.

Example 9.1.2 –Non-ignorable non-response–

• Average incomes and numbers of responses/non-responses to a survey on the income by age, sex and marital status. (Source: Little and Rubin 1987.)

Men			Women		
Age	Single	Married	Single	Married	
< 30	20.0	21.0	16.0	16.0	
	24/1	5/11	11/1	2/2	
> 30	30.0	36.0	18.0	_	
	15/5	2/8	8/4	0/4	

• The observations are grouped by average, and we assume an exponential shape for the individual data,

$$y_{a,s,m,i}^* \sim \mathcal{E}xp(\mu_{a,s,m})$$

with $\mu_{a,s,m} = \mu_0 + \alpha_a + \beta_s + \gamma_m$,

$$\circ 1 \leq i \leq n_{a,s,m}$$

- $\circ \alpha_a \ (a=1,2)$ corresponds to age (junior/senior)
- $\circ \beta_s$ (s = 1, 2) corresponds to sex (fem./male)
- $\circ \gamma_m \ (m=1,2)$ corresponds to family (single/married)
- The model is unidentifiable, but that can be remedied by constraining $\alpha_1 = \beta_1 = \gamma_1 = 0$.

• A more difficult and important problem appears when nonresponse depends on the income, say in the shape of a logit model,

$$p_{a,s,m,i} = \frac{\exp\{w_0 + w_1 y_{a,s,m,i}^*\}}{1 + \exp\{w_0 + w_1 y_{a,s,m,i}^*\}},$$

where

 $p_{a,s,m,i}$ denotes the probability of nonresponse and

 (w_0, w_1) are the logit parameters.

• The likelihood of the complete model is

$$\prod_{\substack{a=1,2\\s=1,2\\m=1,2}} \prod_{i=1}^{n_{a,s,m}} \frac{\exp\{z_{a,s,m,i}^*(w_0+w_1y_{a,s,m,i}^*)\}}{1+\exp\{w_0+w_1y_{a,s,m,i}^*\}} (\mu_0+\alpha_a+\beta_s+\gamma_m)^{r_{a,s,m}}$$

$$\times \exp\left\{-r_{a,s,m}\overline{y}_{a,s,m}(\mu_0 + \alpha_a + \beta_s + \gamma_m)\right\}$$

- $\circ z_{a,s,m,i}^*$ is the indicator of a missing observation
- $\circ n_{a,s,m}$ is the number of people by category
- $\circ r_{a,s,m}$ is the number of responses by category
- $\circ \overline{y}_{a,s,m}$ is the average of these responses by category

9.1] INTRODUCTION

- The completion of the data then proceeds by simulating
 - \circ The $y_{a,s,m,i}^*$'s from $\pi(y_{a,s,m,i}^*)$

$$\propto \exp(-y_{a,s,m,i}^* \mu_{a,s,m}) \frac{\exp\{z_{a,s,m,i}^*(w_0 + w_1 y_{a,s,m,i}^*)\}}{1 + \exp\{w_0 + w_1 y_{a,s,m,i}^*\}},$$

which requires a Metropolis-Hastings step.

• The parameters are simulated from

The parameters are simulated from
$$\prod_{\substack{a=1,2\\s=1,2\\m=1,2}} (\mu_0 + \alpha_a + \beta_s + \gamma_m)^{r_{a,s,m}}$$

$$\times \exp\left\{-r_{a,s,m}\overline{y}_{a,s,m}(\mu_0 + \alpha_a + \beta_s + \gamma_m)\right\}$$

for $\mu_0, \alpha_2, \beta_2, \gamma_2$, possibly using a gamma instrumental distribution.

 \circ And (w_0, w_1) from

$$\prod_{\substack{a=1,2\\s=1,2\\m=1}}^{n_{a,s,m}} \prod_{i=1}^{\exp\{z_{a,s,m,i}^*(w_0+w_1y_{a,s,m,i}^*)\}} \frac{1}{1+\exp\{w_0+w_1y_{a,s,m,i}^*\}}$$

which corresponds to a logit model.

9.2 Finite mixtures of distributions

• Mixtures of distributions

$$\widetilde{f}(x) = \sum_{j=1}^{k} p_j f(x|\xi_j) ,$$

where $p_1 + \ldots + p_k = 1$, are useful in practical modeling.

- They can be challenging from an inferential point of view, that is, when estimating the parameters p_j and ξ_j .
- The likelihood is quite difficult to work with, being of the form

$$L(p,\xi|x_1,...,x_n) \propto \prod_{i=1}^n \left\{ \sum_{j=1}^k p_j f(x_i|\xi_j) \right\} ,$$

containing k^n terms.

• A solution is to take advantage of the missing data structure, and associate with every observation x_i an indicator variable $z_i \in \{1, \ldots, k\}$ that indicates which component of the mixture x_i comes from. The demarginalization (or *completion*) of the mixture model is then

$$z_i \sim \mathcal{M}_k(1; p_1, \dots, p_k), \qquad x_i | z_i \sim f(x | \xi_{z_i}).$$

• The likelihood of the completed model is

$$\ell(p,\xi|x_i^*,\ldots,x_i^*) \propto \prod_{i=1}^n p_{z_i} f(x_i|\xi_{z_i})$$

$$= \prod_{j=1}^k \prod_{i;z_i=j} p_j f(x_i|\xi_j)$$

• A Gibbs sampler is then

Algorithm A.6 –Mixture simulation–

1. Simulate z_i $(i=1,\ldots,n)$ from $P(z_i=j) \propto p_j \; f(x_i|\xi_j) \qquad (j=1,\ldots,k)$ and compute the statistics

$$n_j = \sum_{i=1}^n \mathbb{I}_{z_i = j} , \qquad n_j \overline{x}_j = \sum_{i=1}^n \mathbb{I}_{z_i = j} x_i .$$

2. Generate $(j=1,\ldots,k)$

$$\xi \sim \pi \left(\xi | \frac{\lambda_j \alpha_j + n_j \overline{x}_j}{\lambda_j + n_j}, \lambda_j + n_j \right),$$
 $p \sim \mathcal{D}_k(\gamma_1 + n_1, \dots, \gamma_k + n_k).$

Example 9.2.1 – Normal mixtures – In the case of a mixture of normal distributions,

$$\tilde{f}(x) = \sum_{j=1}^{k} p_j \frac{e^{-(x-\mu_j)^2/(2\tau_j^2)}}{\sqrt{2\pi} \tau_j},$$

the conjugate distribution on (μ_j, τ_j) is

$$\mu_j | \tau_j \sim \mathcal{N}\left(\alpha_j, \tau_j^2 / \lambda_j\right), \qquad \tau_j^2 \sim \mathcal{IG}\left(\frac{\lambda_j + 3}{2}, \frac{\beta_j}{2}\right)$$

and the two steps of the Gibbs sampler are as follows \rightarrow

Algorithm A.7-Normal mixture-

1. Simulate $(i = 1, \ldots, n)$

$$z_i \sim P(z_i = j) \propto p_j \exp \left\{ -(x_i - \mu_j)^2 / (2\tau_j^2) \right\} \tau_j^{-1}$$

and compute the statistics $(j = 1, \dots, k)$

$$n_j = \sum_{i=1}^n \mathbb{I}_{z_i = j}, \quad n_j \overline{x}_j = \sum_{i=1}^n \mathbb{I}_{z_i = j} x_i, \quad s_j^2 = \sum_{i=1}^n \mathbb{I}_{z_i = j} (x_i - \overline{x}_j)^2.$$

2. Generate

$$\mu_j | \tau_j \sim \mathcal{N}\left(\frac{\lambda_j \alpha_j + n_j \overline{x}_j}{\lambda_j + n_j}, \frac{\tau_j^2}{\lambda_j + n_j}\right),$$

$$\tau_j^2 \sim \mathcal{IG}\left(\frac{\lambda_j + n_j + 3}{2}, \frac{\beta_j + s_j^2}{2}\right),$$

$$p \sim \mathcal{D}_k(\gamma_1 + n_1, \dots, \gamma_k + n_k).$$

Example 9.2.2 – Stochastic Volatility –

- Stochastic volatility models are popular in financial applications, especially in describing series with sudden changes in the magnitude of variation of the observed values.
- They use a latent linear process (Y_t^*) , called the *volatility*, to model the variance of the observables Y_t .
- Let $Y_0^* \sim \mathcal{N}(0, \sigma^{*2})$ and, for $t = 1, \dots, T$, define

$$\begin{cases} Y_t^* = \varrho Y_{t-1}^* + \sigma^* \epsilon_{t-1}^*, \\ Y_t = e^{Y_t^*/2} \epsilon_t, \end{cases}$$

where ϵ_t and $\epsilon_t^* \sim \mathcal{N}(0, 1)$.

• The observed likelihood $L(\varrho, \sigma^*|y_0, \ldots, y_T)$ is obtained by integrating the complete-data likelihood

$$L^{c}(\varrho, \sigma^{*}|y_{0}, \dots, y_{T}, y_{0}^{*}, \dots, y_{T}^{*})$$

$$\propto \exp - \sum_{t=0}^{T} \left\{ y_{t}^{2} e^{-y_{t}^{*}} + y_{t}^{*} \right\} / 2$$

$$\times (\sigma^{*})^{-T+1} \exp - \left\{ (y_{0}^{*})^{2} + \sum_{t=1}^{T} (y_{t}^{*} - \varrho y_{t-1}^{*})^{2} \right\} / 2(\sigma^{*})^{2}.$$

- The figure shows a typical stochastic volatility behavior for $\sigma^* = 1$ and $\varrho = .9$.
- Likelihood and Bayesian inference on this model can be done with the EM algorithm or the Gibbs sampler